Художественные свойства бронзы. Что такое бронза: виды сплава, состав и свойства

Как сделать бронзу? Этот вопрос стоит перед многими мастерами, желающими проявить себя в художественном литье, или людьми, решившими повысить свой уровень образованности в работе с различными металлическими сплавами. Чтобы ответить на этот вопрос, необходимо для начала разобраться что такое бронза, из чего она состоит и только потом подробно рассмотреть весь процесс плавки этого материала.

1 Что такое бронза?

Бронза (итал. “bronzo”) – это сплав в определенных пропорциях меди и олова, где медь всегда является первичным или основным компонентом, а олово вторичным или необязательным. Вместо него в сплав могут быть введены кремний, свинец, алюминий, бериллий и другие металлы, кроме никеля и цинка, хотя иногда и они вводятся в небольших пропорциях.

Бронзовый сплав имеет свои достоинства и недостатки. К положительным техническим характеристикам можно отнести:

  • большую твердость и прочность по сравнению с медью;
  • легкоплавкость;
  • обладает всеми достоинствами для литья;
  • имеет высокие антикоррозийные свойства;
  • обладает хорошей устойчивостью к износу при длительном трении.

Недостатками бронзы считаются:

  • плохо поддается ковке, штамповке и прокатке, то есть всем процессам, происходящим под давлением;
  • туго режется;
  • плохо затачивается.

По названию добавляющегося металла происходит название полученного бронзового сплава. При добавлении олова получают оловянную бронзу, алюминия – алюминиевую бронзу, бериллия – бериллиевую и т. д.

Классической (колокольной) или основной считается оловянная бронза, в которой медь берется из расчета 80 % ± 3 %, а олово – 20 % ± 3 % от всего сплава. При изготовлении бронзы могут легироваться другие металлы, например, никель, свинец, фосфор и мышьяк. Это делают для придания металлу дополнительных технических свойств. Бронза может быть однокомпонентной, при которой медь сплавляется с одним добавочным металлом, или многокомпонентной, где при сплавлении участвует несколько материалов. Многокомпонентные бронзы считаются более сложными и имеют улучшенные технические характеристики.

Также процесс изготовления бронзы предусматривает получение первичного или вторичного материала. Чтобы получить первичный классический сплав, необходимо сплавить медь и олово, вторичный – при выплавке применить в качестве дополнительного компонента саму бронзу.

Открытие бронзового сплава сыграло большую роль в развитии человеческой эпохи. Конец 4 тысячелетия до н. э. считается временем первого изготовления бронзы и началом длительного пути человека в освоении сплавов различных металлов. Открытие было настолько значимым в истории, что ознаменовало собой начало целой исторической эпохи – Бронзового века. Изготовить бронзу в древние времена было невероятно сложно, что подтверждают попытки получения металла в настоящее время в домашних условиях.

2 Классическая технология изготовления бронзы

Изготовить бронзу можно путем плавки основного компонента меди и дополнительного, например, олова, в стальной или чугунной вращающейся втулке с помощью электрической дуги.

При плавлении оловянных бронз образуются оксиды при непосредственном взаимодействии меди и олова, что снижает технические свойства полученного сплава. Во избежании потери эксплуатационных свойств бронзы перед добавлением олова в расплавленную медь ее раскисляют фосфором, то есть в добавляют фосфористую медь, где количество фосфора не превышает 10 %.

Химическая реакция с образованием паров фосфорного ангидрида позволяет провести процесс удаления неметаллических включений в меди. Фосфор – это недорогой раскислитель, значительно снижающий хорошее свойство меди электропроводность. Поэтому иногда для избежания этого эффекта используются более дорогие компоненты в качестве раскислителя. К ним можно отнести кальций, литий и калий.

Процесс плавления, чтобы получить бронзу, делают под слоем древесного угля или его смеси с содой – флюса, и он проходит в несколько общих этапов:

  1. при температуре около 1100 °C под слоем флюса или угля.
  2. Ввод фосфористой меди (около 10 %) для раскисления.
  3. Добавление дополнительных компонентов для получения однокомпонентного сплава – олова, многокомпонентного – всех дополнительных составляющих, вторичного бронзового сплава – бронзы.
  4. Прогревание полученного сплава до температуры 1200 °C.
  5. Рафинирование – удаление вредных неметаллических примесей висмута, марганца, серы и сурьмы, а также иногда алюминия, железа, кремния и растворенных газов водорода и кислорода из сплава путем окисления основного компонента.
  6. Модифицирование для повышения механических свойств сплава.
  7. Разлив по формам при температуре до 1300 °C.

Оловянные бронзы более просты в процессе выплавки и менее склонны к перегреву, чем алюминиевые. Для алюминиевой бронзы очень важен температурный режим, поэтому температура плавления выше 1200 °C не допускается.

3 Изготовление неоловянных бронз

Чтобы изготовить алюминиевую бронзу, необходимо не только следить за температурой, но и хорошо размешать сплав перед заливкой в формы. Это делается из-за большой разницы в плотности сплавляемых компонентов, ведь медь и алюминий могут расслоиться. Поэтому сам процесс немного видоизменяется:

  1. Медь расплавляется под флюсом и раскисляется.
  2. Вводятся дополнительные компоненты в чистом виде или в виде смеси с медью.
  3. Производится вторичное раскисление.
  4. Вводится алюминий.
  5. Засыпается поверхность сплава флюсом.
  6. Сплав рафинируется хлористым марганцем, модифицируется ванадием, бором или вольфрамом и заливается в формы.

Бериллиевая бронза выплавляется по общим этапам в индукционных печах. В процессе применяют графитовые тигли. Высокая токсичность получаемой пыли и паров при изготовлении этого вида бронзы требует проведения выплавки в отдельных изолированных помещениях с мощной системой вентиляции.

Кремнистые бронзы получают в электрических индукционных печах с применением древесного угля. Как и для алюминиевых, для кремниевых сплавов важен контроль за температурой плавления.

Конечный продукт сплава представляет собой металлическую чушку, причем вес ее обычно не более 42 кг. Все чушки, получившиеся в результате разовой плавки, относят к одной партии, вес партии не ограничивается.
Как и любая продукция, бронзовые чушки имеют документ о качестве, отражающий основную информацию: товарный знак производителя, марку выплавленной бронзы, массу и номер партии, количество чушек в партии и их химический анализ.

Необходимость изготовления бронзы обусловлена широкой сферой применения. Арматура, все детали, работающие в непосредственном контакте с паром и маслами, вкладыши подшипников, фасонные элементы трубопровода – вот небольшой список использования бронзы.

История бронзы суть история человеческой цивилизации. Это первый сплав, полученный человеком еще на заре 3 тысячелетия до н. э. Изменялся его состав, совершенствовалась технология получения, но своего огромного значения он не утрачивал никогда.

2 медных сплава, однако, к бронзе отношения не имеют: это – сплав меди с , и мельхиор – с . Латунь заметно уступает бронзам по коррозионной стойкости и твердости. Это сплав пластичный и сохраняет превосходную ковкость при самых разных . И если в искусстве предпочтение отдается бронзе, то выигрывает.

Плюсы и минусы

Столь давняя известность и длительное использование материала может объясняться только массой его превосходных качеств. А также возможности эти качества изменить, используя в качестве легирующей добавки другой компонент.

  • Разнообразие – одно из лучших свойств материала. Оловянные, алюминиевые, серебряные, бериллиевые бронзы применяются чрезвычайно широко в самых неожиданных сферах, поскольку добавка других металлов придают составу совершенно другие качества. Так, большинство бронзовых сплавов относительно плохо проводят электричество. Чего нельзя сказать о серебряной бронзе: при доле в какие-то 0,25% серебра сплав проводит ток не хуже меди.
  • Бронзовые составы могут быть литьевыми и деформируемыми. То есть, для определенных целей можно получить сплав, подвергающийся холодной ковке – деформация при нормальной температуре, и сплав, который можно отливать.
  • Бронзовые отливки дает минимальную усадку – от 0,5 до 1,5%. Это свойство объясняет популярность материала не только среди скульпторов, но и в сфере приборо- и станкостроения.
  • Бронза – материал, который можно использовать и второй раз, и третий, и четвертый. Сплав отлично переносит повторные плавки.
  • Сплав безопасен. Если при изготовлении его некоторые компоненты могут быть опасными – бериллий, например, то готовый материал совершенно нетоксичен.
  • Она отличается исключительной коррозийной стойкостью: ни городской загазованный воздух, ни морская вода не вызывают деформации материала или снижения его качеств. Даже действию большинства кислот бронза не подвержена, поэтому часто используется при изготовлении кислотоупорной аппаратуры.
  • Еще одно интересное качество многих сплавов – высокая упругость. Материал применяют при изготовлении разнообразных высокоточных пружин, отличающихся долговечностью.

К недостаткам сплава можно отнести его стоимость. Медь, а тем более – металлы хотя относительно распространенные, но дорогие в получении. Другие виды бронз – алюминиевая, например, стоит намного меньше, поскольку легирующим компонентом выступает более доступный по стоимости материал.

Можно назвать недостатком и низкую теплопроводность большинства сплавов. Однако это качество тоже нашло применение – при изготовлении аксессуаров для ванной или самих ванн и умывальников.

Разновидности

Различают бронзы по нескольким признакам, указывающим на состав и на более характерные свойства.

По составу выделяют:

  • оловянные – сплавы могут быть двух- и многокомпонентными. Однако олово здесь остается вторым по массе ингредиентом;
  • безоловянные – все остальные: алюминиевая, бериллиевая, кремниевая, и так далее. Каждый из компонентов придает бронзе какие-то свойства. Так, бериллий обеспечивает материалу исключительную упругость и очень высокую износостойкость, а добавка кремния обеспечивает антифрикционные свойства.

По применению различают бронзы такие:

  • деформируемые – сплавы легко поддаются ковке, их можно прокатывать, ковать, резать;
  • литьевые – изделия получают методом литья, поскольку деформируется она только при высокой температуре. Из сплава получают отливки самой сложной конфигурации.

Более специфическое разделение бронз связано со структурой:

  • однофазные – компоненты в твердом растворе образуют одну какую-то фазу;
  • двухфазные в растворе появляются 2 фазы, что приводит обычно к радикальной смене свойств.

Про основные свойства, механические характеристики бронзы и отличие химического состава данного металла от латуни читайте ниже.

Свойства и характеристики

Более распространены в народном хозяйстве оловянные бронзы. Как правило, при описании свойств указывают параметры литьевых оловянных, поскольку этим способом получают большее количество изделий.

К основным техническим характеристикам сплава относят следующие качества:

  • плотность – определяется массовой долей олова. Так, при его содержании от 8 до 4%, плотность изменяется от 8,6 до 9,1 кг/куб. см;
  • в зависимости от состава сплава температуры плавления его изменяется от 880 до 1060 С;
  • оловянная бронза тепло проводит плохо – от 0,098 до 0,2 кал/(см*с*С);
  • теплоемкость составляет в среднем 0,385 кДж / (кг*К);
  • электропроводность большинства бронз тоже не слишком велика и значительно меньше, чем у меди: величина удельного электросопротивления составляет 0,087– 0,176 мкОм*м;
  • материал очень медленно корродирует и на воздухе, и при контакте с водой. Так, скорость коррозии на воздухе составляет 0,002 мм/год, а в морской воде – 0,04 мм в год.

О том, какие металлы и что еще входит в состав бронзы, какова ее формула и хим. содержание, узнаете ниже.

О том, как покрасить металл «под бронзу», расскажет данное видео:

Структура и состав

  • Свойства сплава – от цвета до жидкотекучести в расплавленном виде, зависят от двух главных факторов: качественного состава бронзы и его структуры. Качественный состав – это набор металлов или неметаллов, участвующих в создании сплава в ощутимом значимом количестве. Причем последнее определяется не собственно массой или объемом вещества, а выраженностью тех свойств, которые он создает. Добавка всего лишь 0,25% серебра значительно увеличивает электропроводность, а чтобы получить антифрикционные свойства добавить нужно не менее 4% кремния.
  • Второй фактор менее известен – это структура сплава или твердого раствора . Дело в том, что в меди может раствориться только 15,8% олова, в то время как в сплаве его может быть заметно больше. Это и обуславливает появление сплавов с разной фазовой структурой.
    • Однофазные – доля олова не превышает 6–8%, здесь существует только одна α-фаза. Такой состав отличается эластичностью и высокой ковкостью. Причем в бронзу с содержанием олова до 2%, можно ковать на холоде без нагрева, а с содержанием металла до 8% – при нагреве.
    • Двухфазные – при превышении доли олова в 15%, то есть максимума растворимости, в твердом растворе появляются 2 фазы. При этом такое качество, как ковкость совершенно исчезает, а сплав начинает набирать твердости и некоторой хрупкости. Такой сплав используют для литья.

Дополнительные элементы, влияющие на свойства, на фазовый состав оказывает малое влияние.

Производство материала

из чистых металлов или сплавов в чушках. Второй более распространен, так как дешевле и позволяет получить любые литьевые бронзы.

  1. Первым этапом является добыча меди и олова на месторождениях. Олово содержится в касситеритах, станнинах и так далее. Медь более распространена: ее добывают из самородной меди и множества минералов – халькопирита, борнита, халькозина. Выделяют металл несколькими разными способами, из которых пирометаллургический, то есть, окислительный отжиг и огневое рафинирование, является наиболее распространенным.
  2. Затем рассчитывают состав шихты: это зависит от состава будущего изделия и от метода получения – из вторичных сплавов, из металла и вторичных сплавов и так далее.
  3. Сама по себе плавка, например, из чушек, включает несколько этапов: – материал загружают в просушенные и нагретые графито-карборудные или графито-шамотные тигли. Лучше всего подходят электрические и электродуговые печи, так как с их помощью можно осуществить плавку как можно быстрее. Это важно, поскольку при сплавлении металлов велика вероятность поглощения газов расплавом;
  4. расплавление – в первую очередь плавят медь, а затем добавляют различные компоненты, улучшающие механические свойства сплава, и основные легирующие добавки;
  5. перегрев – расплав прогревают до 1200 С под слоем древесного угля. Если исходные металлы загрязнены, применяют жидкие солевые флюсы;
  6. дегазация – расплав очищают от газовых примесей путем продувки аргоном или азотом.
  7. Из готового сплава получают отливки. Чаще всего для этого используют литниковые системы. Литье производится в глиняные или металлические формы. Возможно получение отливок способом центробежного литья.

В 2016 году отмечен рост цен на медь – до 4%, и олово – до 10,3%. Соответственно, повышается стоимость продукции из бронзы и бронзового лома. Последний в октябре имел стоимость от 190 до 210 р. за кг.

Цена продукции – пруток, отливка, лист, зависит от состава сплава. Так, пруток разной марки можно приобрести и за 308, и за 803 р. за кг.

Область применения

Бронзовые сплавы, благодаря разнообразию своих свойств, находят самое разное .

  • Самое известное – материал для скульптур и множества декоративных предметов: статуэток, пепельниц, светильников, решеток, украшения перил и прочего. Литьевая бронза позволяет получить самые сложные отливки, передающие буквально поры кожи.
  • В ювелирном деле материал применяется заметно реже, хотя раньше составлял едва ли не основу женских украшений.
  • Бронзовая фурнитура – накладные петли, замки, ручки, краны, смесители и даже сантехника. Сплав обеспечивает не только исключительную долговечность и стойкость к коррозии предметов, но и позволяет превратить их в изящнейший элемент декора.
  • Из литейной бронзы разного состава получают множество деталей – шестерни, втулки, уплотнители, части аппаратуры, предназначенные работать под водой.
  • Деформируемые бронзы находят применение в высокоточной технике.
  • Другие виды сплавов используются в тех областях, где привычная оловянная бронза не применяется. Так, например, бериллиевая бронза обладает куда более высокой тепло- и электропроводностью, а потому активно используется в электротехнике.

Сплав превосходно показывает себя в условиях переменных динамических нагрузок. Поэтому из бериллиевой бронзы изготавливают детали навигационных самолетных приборов, схем автомобилей и прочее.

  • Еще одно всем известное применение – фитинги самого разного рода. Для более активного использования в водоснабжении бронза является чересчур дорогостоящим материалом, однако наиболее ответственные узлы, а также многочисленные крепления изготавливают из медного сплава, поскольку он отличается чрезвычайной стойкостью к коррозии и подавляет активность бактерий.

Бронзы – самый старинный и известный сплав в истории человечества. Разнообразие его состава и свойств обеспечивает ему и сегодня самое широкое распространение.

О том, как отчистить изделия из бронзы, расскажет данный видеосюжет:

Как известно, после золотого века настал серебряный, после него бронзовый, а затем железный. По поводу первых двух исторических периодов мнения историков сильно расходятся. Материальные доказательства бронзового века настолько солидны и многочисленны, что сомневаться в этом этапе развития человечества, возможности нет.

Ну а названо это время в честь главного ее материала – бронзы. И данная статья посвятит вас в химический состав бронзы, магнитные, технологические, физические и механические свойства сплава .

В общем виде бронза – это . Вторым компонентом могут выступать различные металлы за исключением – такой сплав называют , и – он носит название мельхиор. В соответствии с характером второго ингредиента бронзы делятся на оловянные, то есть, содержащие , и безоловянные – все остальные, где вторым компонентом выступает другой металл. Состав мелких примесей при этом не учитывается.

Про состав черной, белой, синей, зеленой, оловянной, алюминиевой и других бронз, пропорции меди и олова в них, а также о том, чем отличается бронза от , читайте ниже.

Состав и структура металла бронза рассмотрены в видео ниже:

Оловяные металлы

Состоят из олова и меди. Как показывают исследования, медь может растворить до 15,8% олова, что автоматически указывает на возможность появления разных фаз твердых растворов. Так оно и есть: до достижения доли олова в 6–8% устойчивой является α-фаза, обеспечивающая хорошую ковкость и пластичность сплава. При увеличении доли олова появляются такие качества, как хрупкость и твердость, что не мешает использовать бронзы с до 65%, поскольку тогда в сплаве имеются и другие интересные качества.

Свойства и даже цвет сплава зависят от олова. Так, при доле в 90–99%, цвет бронзы ближе красному. Цвет сплава, содержащего 85% меди, желтый, содержащего более 50% – белый, а при доле меди в 35% сплав становится серо-стальным.

Соответствующим образом меняются и свойства.

  • При малом содержании олова – до 2%, бронзу можно ковать на холоде, а не только при нормальной температуре.
  • При содержании олова более 5%, ковать сплав можно лишь при температуре красного каления, из-за чего бронза считается не совсем подходящим сплавом для ковки.
  • Если же твердый раствор включает более 15% олова, такое качество как ковкость сплав теряет, приобретая взамен высокую твердость.
  • При очень большом содержании олова сплав вновь становится мягким.

Разновидности

Из-за резкого отличия свойств оловянные бронзы разделяют на 2 группы:

  • деформируемые – с низким содержанием олова. Такие сплавы можно ковать и прокатывать, а также резать и затачивать. Они отличаются упругостью и высоким сопротивлением усталости, поэтому часто используются при изготовлении пружин;
  • литейные – с более высоким содержанием олова. Изделия из нее получают литьем. Несмотря на не слишком высокую текучесть, бронзу используют для получения отливок самой сложной конфигурации, поскольку она дает очень малую усадку – менее 1%, в то время как у чугуна усадка составляет 1,5%, а у стали – 2%.

Превосходные бронзовые изделия – статуэтки, посуду, украшения на перилах и так далее, получают именно литьевым методом.

Примеси

Бронза может включать разнообразные случайные примеси в очень малом количестве. В то же время в состав вводят специальные добавки с тем, чтобы получить дополнительные свойства.

  • – может составлять до 10–15% по массе. Он растворяется в α-растворе и улучшает механические свойства: увеличивает текучесть, плотность отливки и прочее. При этом металл заметно понижает стоимость изделия, поскольку намного дешевле олова. Такая бронза носит название адмиралтейской и более устойчива к морской воде.
  • для придания сплаву и возможности обрабатывать изделия резанием.
  • Фосфор увеличивает жидкотекучесть и износостойкость.

Безоловянные металлы

Представляют собой сплав меди с другими металлами, за исключением цинка и никеля. Такие бронзы называются в соответствии с легирующим элементом, доля которого в сплаве самая большая – алюминиевая бронза, например, бериллиевая и так далее. Маркируется она точно таким же образом. Так, Бр.АМц-7-1 означает, что в сплаве содержится 7% алюминия, 1% марганца и, соответственно, 92% меди.

Другие металлы в сплаве с медью создают иные свойства. Хотя, справедливости ради, большинство из них разработано в попытке удешевить бронзу, исключив из нее дорогое олово.

  • Алюминиевые бронзы – отличаются более высокими антикоррозийными и механическими свойствами, к тому же сплав с алюминием дешевле. Однако, несмотря на то, что алюминиевая бронза более жидкотекучая, она дает большую усадку, поэтому редко используется для . Алюминий с медью образует твердый раствор, состав которого зависит как от доли алюминия, так и от условий получения, в частности, от скорости охлаждения. В результате такие его качества, как пластичность или прочность заметно меняются. Однофазные алюминиевые бронзы отличаются прекрасным сочетанием прочности и пластичности (максимальная нагрузка составляет 400–450 МПа, а пластичность равна 60%). Двухфазные более прочны и тверды, но требуют разной обработки в зависимости от своей структуры. К тому же дают куда большую усадку.
  • Кремнистые бронзы могут включать до 3% кремния и отличаются антифрикционными свойствами и упругостью. Структура однофазная, что обеспечивает хорошую пластичность и относительную легкость обработки. Для отливок применяется редко. Если доля кремния превышает 3%, появляется хрупкая γ-фаза, поэтому состав сплава меняется редко.
  • Бериллиевые бронзы отличаются высокой коррозионной стойкостью, износоустойчивостью, повышенным сопротивлением усталости, а также очень высоким пределом упругости. Сплав является теплостойким материалом – «работает» до температуры в 340 С, обладает хорошей теплопроводностью и электропроводностью. Бериллиевые бронзы можно подвергать закалке и старению, что очень положительно сказывается на их механических качествах.
  • Марганцовая бронза содержит марганец, и, как правило, а порой и олово. Свойства сплавов заметно отличаются и .
  • Довольно известна мышьяковая бронза , но уже лишь как исторический материал. По своим качествам она превосходила оловянную, причем образовывала большое количество сортов для разных целей. Однако исчерпание поверхностных залежей мышьяка, токсичность производства и невозможность переплавки, в конце концов, привели к ее исчезновению.

Характеристики и особые свойства свинцовых, бериллиевых, алюминиевой и других бронз рассмотрены ниже.

Хотите отливать солдатиков у себя дома? Тогда смотрите следующее видео и запаситесь бронзой:

Свойства и характеристики

О свойствах столь разнообразного сплава говорить сложно, поскольку качества бронзы очень сильно зависят от характера и количества легирующей добавки. Но так как именно оловянная остается наиболее известной и чаще всего используемой, ее технические характеристики с учетом фазового состава и будут приводиться в качестве примера.

Плотность и масса

Бронза – сплав достаточно тяжелый. Но и масса изделия из него, и плотность зависят от доли входящих компонентов.

  • В целом плотность оловянной бронзы колеблется от 8,6 до 9,1 г/куб см при изменении доли олова от 8 до 4%.
  • Бронзы алюминиевые, например, литейные, плотность имеют меньшую – от 7,5 до 8,2 г/куб. см;
  • Бериллиевые бронзы имеют меньший диапазон плотности 8,2–8,4 г/куб. см.

Температуры

Эти характеристики тоже определяются качественным и количественным составом сплава. Промышленное значение имеет температура начала плавания, температура горячей обработки, если речь идет о деформируемых бронзах, и температура отжига – термической обработки с целью упрочнения вещества.

Марка Температура плавления, С Температура горячей обработки, С Температура отжига, С
БрОФ8-0,3 880 600–650
БрОФ-7-0,2 900 600–650
БрОФ6,5-0,4 995 700–800 600–650
БрОФ4-0,25 1060 700–800 600–650
БрОЦ4-3 1045 700–800 550–650
БрОЦС4-4-2,5 1018 550–650
БрОЦС4-4-4 1015

Теплоемкость и теплопроводность

Теплопроводность металлов всегда выше, чем неметаллов. Однако для определенных целей нужны очень разные показатели. Медь прекрасно проводит тепло, как и электричество, но ее сплав в значительной мере эту способность утрачивает. Поэтому вещество не используют для изготовления сварочных электродов или узлов трения, поскольку оно не может быстро отдать или отвести тепло.

  • В зависимости от доли олова теплопроводность изменяется от 0,098 до 0,2 кал/(см*с*С).
  • Средняя теплоемкость сплава меди с оловом составляет 0,385 кДж / (кг*К), что практически соответствует меди. Даже железо способно хранить тепло в большей степени.

Коррозийные свойства

Оловянные бронзы отличаются высокой коррозионной стойкостью. Скорость коррозии на воздухе не превышает 0,002 мм/год при содержании олова в сплаве 5–8%.

В морской воде оловянная бронза даже более устойчива, чем сама медь, а также латунь. В зависимости от содержания олова этот показатель повышается: так, сплав с долей олова 6% корродирует на 0,04 мм в год, а с долей металла 10% – на 0,016 мм в год.

Сплавы неустойчивы к действию аммиака, минеральных кислот, особенно соляной и азотной. Однако в присутствии ингибиторов скорость коррозии уменьшается в 10–15 раз.

Электропроводность

Этот показатель у большинства бронз намного ниже, чем у меди, что коррелирует с низкой теплопроводностью. В зависимости от состава, а здесь важны и доля олова, и характер второго легирующего компонента, если он есть, удельное электросопротивление изменяется от 0,087 до 0,176 мкОм*м.

Серебряная бронза – с добавкой серебра 0,25%, имеет такое же удельное сопротивление, как у меди, но, к сожалению, этот состав имеет высокую температуру рекристаллизации.

Токсичность

Сплав меди и олова никому вреда никогда не причинял. И его изготовление, и применение совершенно безопасны для здоровья человека и для окружающей среды.

  • Угрозу могут представлять собой вводимые легирующие добавки. Так, получение мышьяковой бронзы в старину несло ощутимую опасность, поскольку при этом использовался мышьяк, а последний является ядом.
  • Такую же опасность представляет изготовление бериллиевой бронзы, поскольку сам бериллий является токсичным веществом. Готовый сплав совершенно безопасен.

Поскольку бронза – сплав с медью, то есть, является весьма дорогостоящим ломом цветных металлов, то вопросов с ее утилизацией не возникает. Бронза с легкостью переплавляется и может использоваться чуть ли не до бесконечности.

Бронзы – целый ряд самых разнообразных сплавов с самыми разнообразными свойствами. Бронза известна с самых давних времен, но не исчерпала своих возможностей.

У вас завалялась пара бронзовых монет, требующих чистки? Тогда этот видеоролик поможет справиться с такой задачей:

Стремительное развитие металлургии требует от нас изучения характеристик разных металлов и их сплавов, и в этой статье будут подробно рассмотрены свойства бронзы и ее применение. Кроме того, скажем пару слов об ее видах и, конечно же, особенностях каждого из них.

1

У этого сплава длинная и интересная история, ведь в честь него даже назвали один из веков – бронзовый, и свою популярность он не утратил вплоть до наших времен. Бытует мнение, что само слово произошло от итальянского созвучного "bronzo", а последнее имеет персидские корни. Итак, это сплав меди с иными металлами, в основном оловом, причем их весовое соотношение может быть различным. В зависимости от процентного содержания того либо иного элемента получается различный цвет бронзы – начиная от красного (при большом содержании меди) и заканчивая стальным серым (в этом случае в сплаве не более 35% Cu).

Однако сочетание не всех металлов с медью называется бронзой. Так, например, если легирующим элементом выступает цинк, то полученный сплав желто-золотистого цвета будет носить название латунь. А вот если сплавлять Ni и Cu, образуется мельхиор, из которого чеканят монеты. Этот материал красивого серебристого цвета, который сохраняет внешний вид очень долго. Но в этом разделе остановимся на видах именно бронзы. Как уже было сказано в основном это сочетание меди с оловом, такие варианты называются оловянными. Это один из первых видов, который был освоен человеком.

Самое большое содержание олова достигает 33%, тогда материал имеет красивый белый, немного серебристый цвет. Далее же содержание этого элемента снижается. Меняется, конечно, и цвет, палитра тут довольно разнообразная – от красного до желтого. Твердость такой бронзы превышает показатель для чистой меди, кроме того, она имеет лучшие прочностные характеристики, при этом являясь более легкоплавким материалом. В этом случае олово выступает первым легирующим элементом, кроме него в сплаве могут присутствовать еще и мышьяк, свинец, цинк, но это вовсе не обязательно.

Также существует и еще ряд сплавов меди с иными металлами (алюминием, железом, кремнием, свинцом и т. д.), но уже без участия Sn. Они также имеют ряд достоинств, причем по некоторым параметрам им даже уступают оловянные бронзы, еще большим разнообразием характеризуется их палитра. Поэтому работа по созданию цветных сплавов сродни творчеству. Рассмотрим в следующем пункте более подробно свойства различных материалов, которые мы можем получить из меди с применение добавок.

2

Итак, не только цвет меняется из-за добавок. В случае с оловянными бронзами технические характеристики напрямую зависят от весового содержания главного и дополнительных легирующих элементов. Так, например, при 5% Sn пластичность сплава начинает падать, а если количество олова достигнет 20%, то резко ухудшаются и механические свойства материала, и он становится более хрупким, снижается твердость. Вообще, бронзы, в состав которых входит более 6 весовых процентов Sn, используются в литейном производстве, для ковочных же и прокатных работ они непригодны.

Если же добавить в сплав до 10% по весу цинка, то он практически не произведет никакого влияния на механические свойства оловянной бронзы, только лишь несколько удешевит ее. Чтобы улучшить обрабатываемость материала в него вводят до 5% свинца, благодаря включениям которого облегчается стружколомание. Ну а фосфор выступает в качестве раскислителя, и если в сплаве содержится более одного процента этого элемента, то такие бронзы часто называют фосфористыми.

Сравнивая оловосодержащие бронзы со сплавами, в состав которых не входит Sn, то первые значительно выигрывают по величине усадки, она у них минимальная, зато вторые имеют иные преимущества . Так, механические свойства алюминиевой бронзы значительно превосходят характеристики оловянной, кроме того, она имеет еще и большую химическую стойкость. Кремнецинковая же более жидкотекучая, а бериллиевая наделена высокими показателями упругости, на таком же уровне находится и ее твердость.

Для сфер, где применяются бронзы, особенно важна теплопроводность. Мы привыкли, что этот показатель для металлов довольно высокий. Но особенность всех сплавов в том, что, как правило, теплопроводность при введении добавок падает. Не стала исключением и обсуждаемая нами разновидность сплавов. Всем хорошо известно, насколько высока теплопроводность чистой меди, часто это даже становится причиной ограничений в ее использовании. А вот для бронз все совсем по-другому, это качество проявляет себя значительно меньше. Даже по сравнению с похожим теплопроводность бронзы в большинстве случаев заметно ниже. Исключением являются лишь низколегированные сплавы меди, естественно, они приближаются по этому показателю к чистому металлу.

Низкая теплопроводность становится причиной затрудненного отвода тепла, поэтому бронзы не используются в узлах трения, в качестве электродов для сварки или других механизмах, где устранять перегрев нужно максимально быстро.

3

Бронза широко используется в разных промышленных областях, причем и применение ее весьма различно. Так, например, литые оловосодержащие сплавы с высокой стойкостью против истирания являются прекрасным антифрикционным составом, и их используют в качестве подшипниковых материалов. Благодаря же великолепной стойкости бронзы вполне целесообразно делать арматуру и , твердость и механические показатели которых будут довольно высокие.

Также стоит отметить бериллиевые бронзы, отличающиеся прекрасной свариваемостью, химической стойкостью, поддающиеся обработке режущим инструментом. Все эти свойства делают данный материал пригодным для изготовления ответственных элементов, таких, как мембраны, пружины, пружинящие контакты и т. д. Так как теплопроводность большинства бронз невелика, то детали, сделанные из такого материала, легко свариваются.

Чтобы определить состав сплава, достаточно посмотреть на его маркировку, которая состоит из набора цифр и букв. Так, первым в обозначении всегда идет сочетание букв "Бр". Далее следуют обозначения веса легирующих добавок в процентном содержании, причем сначала буквенные символы, а за ними уже численные значения, разделенные дефисом в соответствующем порядке. Стоит отметить, что в бронзах не указывается количество меди.

Маркировка необходима не только чтобы узнать состав сплава и его характеристики (твердость, теплопроводность и другие), с ее помощью определяют и удельный вес любого вида бронзы. Для этого придется воспользоваться специализированными справочниками, если же марка сплава неизвестна, тогда следует сделать химический анализ. К слову, удельный вес этого сплава используется еще и при подготовке каких-либо работ. Если углубиться в формулу, то видно, что это отношение массы заготовки к ее объему. Следовательно, узнав из таблицы удельный вес любого типа этого "цветастого" сплава, мы можем оценить, какой объем будет иметь деталь определенной массы, или, наоборот, сколько будет весить брусок заданного объема.

БРОНЗЫиБРОНЗОВЫЙ ПРОКАТ

Классификация бронзовых сплавов

Бронзами называются сплавы на основе меди, в которых основными легирующими элемен-тами являются олово, алюминий, железо и другие элементы (кроме цинка, сплавы с которым относятся к латуням). Маркировка бронз состоит изсочетания «Бр»,букв, обозначающих основ-ные легирующие элементы и цифр, указывающих на их содержание.

По химическому составу бронзы классифицируются по названию основного легирующего элемента. При этом бронзы условно делят на два класса: оловянные (с обязательным присут-ствием олова) и безоловянные.

По применению бронзы делят на деформируемые, технологические свойства которых допускают производство проката и поковок, и литейные, используемые для литья. В то же время многие бронзы,из которых производится прокат, используются и для литья.

Химический состав и марки бронзовых сплавов определены в следующих ГОСТах:

Литейные: оловянные в ГОСТ 613-79 ,безоловянные в ГОСТ 493-79.

Деформируемые: оловянные в ГОСТ 5017-2006 , безоловянные в ГОСТ 18175-78

Многообразие бронз отражает приведенная ниже таблица. В ней представлены практически все деформируемые и часть литейных бронз. Бронзы, используемые исключительно как литейные, помечены «звездочкой ». В дальнейшем будут рассматриваться преимущественно деформируемые бронзы. Структура бронзовых сплавов кратко рассмотрена в - Структура и свойства сплавов.

ОЛОВЯННЫЕ БРОНЗЫ
БрО5* БрОФ4-0.25 БрОЦ4-3 БрОС8-12*
БрОЦС4-4-2.5
БрО10* БрОФ6.5-0.15 БрОЦ8-4* БрОС5-25* БрОЦС4-4-17*
БрО19* БрОФ7-0.2 БрОЦ10-2* БрОС10-10* БрОЦС5-5-5*
БрОФ10-1* БрОС6-15* БрОЦС6-6-3*
АЛЮМИНИЕВЫЕ БРОНЗЫ
БрА5 БрАМц9-2 БрАЖ9-4 БрАЖМц10-3-1.5 БрАЖН10-4-4
БрА7 БрАМц10-2* БрАЖНМц10-4-4-1 БрАЖН11-6-6*
КРЕМНИСТЫЕ
БЕРИЛЛИЕВЫЕ КАДМИЕВЫЕ МАГНИЕВЫЕ ХРОМОВЫЕ
БрКМц3-1 БрБ2 БрКд1 БрМг0.3 (0.5 и 0.8)
БрХ0.8
БрКН1-3 БрБ2.5 БрКдХ0.5-0.15
БрХ1
БрКН0.5-2 БрБНТ-1.9 БрХ1Цр
СЕРЕБРЯНЫЕ ЦИРКОНИЕВЫЕ
СВИНЦОВЫЕ МАРГАНЦЕВЫЕ
БрСр0.1 БрЦр0.2 БрС30* БрМц5

Физические свойства бронзовых сплавов

Модуль упругости Е разных марок меняется в широких пределах: от 10000 (БрОФ, БрОЦ) до 14000 (БрКН1-3, БрЦр). Модуль сдвига G меняется в пределах 3900-4500. Эти величины сильно зависят от состояния бронзы (литье, прокат, до и после облагораживания). Для нагартованных лент наблюдается анизотропия по отношению к направлению прокатки.

Обрабатываемость резанием практически всех бронз составляет 20% (по отношению к ЛС63-3). Исключение составляют оловянно-свинцовые бронзыБрОЦС с очень хорошей обраба-тываемостью ( 90% для БрОЦС5-5-5).

Ударная вязкость меняется в широких пределах, в основном она меньше, чем для меди (для сопоставимости результатов все значения приведены для литья в кокиль):

БрОФ 10-1 БрОФ 6.5-0.4 БрАЖ 9-4 БрА5 Медь БрМц5
БрОЦС 6-6-3 БрОЦС 4-4-2.5 БрАЖМц БрА7
БрОС 5-25 БрОЦ4-3 БрАМц 9-2 БрКМц3-1
Значение ударной вязкости >> увеличение >>
1 – 3 4 – 6 6 – 8 15 – 16 16 – 18 20

Электропроводность большинства бронзовых сплавов существенно ниже, чем у чистой меди и многих латуней (значения удельного сопротивления приведены в мкОм*м):

БрКд
Медь БрМг Л63 БрОЦ4-3 БрАМц БрКМц БрОФ7-0.2
БрСр БрЦр ЛС59-1 БрОЦС5-5-5 БрА7 БрАЖМц
БрХ БрАЖ9-4 БрАЖН
Значения удельного электросопротивления >> ухудшение электропроводности>>
0.02 0.02 - 0.04 0.065 0.09-0.1 0.1-0.13 0.15 0.19

Сопротивление серебряной бронзы (медь легированная серебром до 0.25%) такое же как у чистой меди, но такой сплав имеет большую температуру рекристаллизации и малую ползучесть при высоких температурах.

Низкое удельное сопротивление имеют низколегированные бронзовые сплавы БрКд, БрМг, БрЦр, БрХ.. Величина электропроводности имеет существенное значение для бронз, используемых для изготовления коллекторных полос, электродов сварочных машин, для пружинящих электрических контактов. Приведенные значения являются ориентировочными, т.к. на величину сопротивления оказывает влияние состояние материала. Особенно сильно оно может измениться под влиянием облагораживания (в сторону уменьшения, это касается БрХ, БрЦр, БрКН, БрБ2 и др.). Например электросопротивление БрБ2 до и после облагораживания составляют 0.1 и 0.07 мкОм*м.

Теплопроводность большинства бронз существенно ниже теплопроводности меди и ниже теплопроводности латуней (значения приведены в кал/ cм*с * С):

Медь БрКд БрКН1-3 Л63 БрАЖН БрАМц БрОФ10-1 БрКМц
БрСр БрМг БрА5 ЛС59-1 БрБ2 БрАЖ БрМц5
БрХ БрОЦ4-3 БрАЖМц
Значения теплопроводности >> ухудшение >>
0.9 0.8-0.6 0.25 0.25 0.25-0.18 0.17-0.14 0.13-0.12 0.1-0.09

Высокую теплопроводность имеют низколегированные бронзы. Облагораживание улучшает теплопроводность. Высокая теплопроводность особенно важна для обеспечения отвода тепла в узлах трения и в электродах сварочных машин. Низкая теплопроводность облегчает процесс сварки бронзовых деталей.

Механические свойства бронзового проката

Если из всего разнообразия латуней массово производится прокат только двух марок (ЛС59-1 и Л63), то для массового производства полуфабрикатов из бронзы используется значительно большее количествомарок.Бронзовый прокат включает в себякруги, трубы, проволоку, ленты, полосы и плиты.

Бронзовые круги

Бронзовые круги выпускаются прессованными, холоднодноформированными и методом непрерывного литья. Способ производства и диапазон производимых диаметров определяется технологическими свойствами конкретной бронзы. В таблице указано соответствие между марками бронз, диаметром прутка и способом производства.

Общее представление об основных механических свойствах бронзовых кругов дает следующая гистограмма.

Непрерывнолитые круги .

Методом непрерывного литья массово производятся БрОЦС5-5-5, БрАЖ9-4, реже БрОФ10-1 и БрАЖМц10-3-1.5. В изделиях, полученных этим способом, отсутствуют дефекты, характерные для литья в кокиль или песчаную форму. Поэтому по своим свойствам непрерывнолитые полуфабрикаты существенно превосходят отливки в кокиль и близки к прессованным полуфабрикатам.

Круги изБрОЦС5-5-5 и БрОФ10-1 имеют относительно гладкую поверхность, нарушаемую неглубокими вмятинами от тянущего устройства. Круги этих марок производятся только непрерывнолитым способом.

Круги из БрАЖ и БрАЖМц, полученные методом непрерывного литья, могут иметь на поверхности опоясывающие трещины глубиной до 1 мм. По твердости, прочности и пластичности непрерывнолитые круги незначительно уступают прессованным, антифрикционные свойства у них практически одинаковы, а стоимость их существенно ниже. При необходимости качественные круги больших диаметров (свыше 100 мм) и короткой длины можно отливать методом центробежного литья.

Прессованные и холоднодеформированные круги . Термоупрочняемые (облагораживаемые) бронзы

В некоторых бронзах при понижении температуры растворимость легирующей компоненты резко падает и её выделение из твердого раствораприводит к эффекту дисперсионного твердения. Этот процесс сопровождается резким изменением физических и механических свойств.

Бронзы, способные к дисперсионному твердению, позволяют осуществлять упрочнение изделий из них за счет специальной термообработки (старение, облагораживание). В результате возрастают твердость, пределы текучести и прочности, улучшается коррозионная стойкость, повышается тепло- и электропроводность.

К бронзам с эффектом дисперсионного твердения относятся бериллиевые, хромистые, циркониевые, кремнисто-никелевые и некоторые сложные сплавы (см. таблицу марок бронз). Полуфабрикаты из таких бронз (прутки, ленты, плиты, проволока) имеют следующие состояния поставки:

- Без термообработки .

Это горячекатаные плиты или прессованные прутки, остывшие со скоростью естественного охлаждения.

- С термообработкой (закалка) .

В этом случае полуфабрикат нагревается донекоторой «высокой» температуры после чего производится его закалка в воду для получения пересыщенного твердого раствора. Это закаленные полуфабрикаты, состояние которых обычно маркируется буквой «М». Такая термообработка повышает пластичность и позволяет в дальнейшем производить операции гибки, вытяжку, прокатку и другие виды холодной деформации. Твердость, пределы текучести и прочности, пластичность закаленных бронз несколько выше, чему прессованных.

-С термообработкой (закалка) и последующей холодной деформацией .

Холодная деформация повышает пределы текучести и прочности и увеличивает твердость закаленных полуфабрикатов. Холоднодеформированный полуфабрикат после закалки обычно маркируется буквой «Т».

Второй этап термообработки – отпуск, обычно производится уже над изделием. Отпуск производится при «низкой температуре» в течение определенного времени. В процессе отпуска происходит выделение избыточной фазы с упорядоченным распределением легирующего элемента. Эти выделения связаны со значительными напряжениями кристаллической решетки, которые вызывают повышение прочности и твердости.

Таким образом, облагораживание такого класса бронз состоит из двух операций. Вначале производится быстрая закалка, затем длительный отпуск. Между закалкой и отпуском может производиться упрочнение холодной деформацией или изготовление детали. Режимы облагораживания сильно зависят от химического состава бронзы. Для БрБ2 температура закалки 750-790 С, температура отпуска 300 – 350 Св течение 2 – 4 часов. Для БрХ0.5 температура закалки 950 С, температура отпуска 400 С в течение 4 часов.

Эффект термообработки для прутка из БрБ2 показан на гистограмме, а для лент - в таблице. Там же, в таблице,приведен эффект облагораживания для хромистой бронзы БрХ0.5.

БрБ2

БрХ0.5

После закалки (М)

После закалки и отпуска

После закалки (М)

После закалки и отпуска

Модуль упругости Е, МПа

9500

10500

11200

Предел текучести, МПа

200 - 350

950 - 1350

500

270

Пределпрочности, МПа

400 - 600

1100-1500

240

410

Относительноеудлинение

Твердость HV

< 130

330

130

Электрическое сопротивление

0.04 - 0.07

0.04

0.02

Дисперсионное твердение изделий, изготовленных из термоупрочняемых бронз (БрБ2, БрХ, БрХЦр, БрКН) и сплавов (МНМц20-30) существенно повышают показатели прочности и твердости в сравнении с исходным материалом поставки. Наибольший эффект от облагораживанияимеют изделия из бериллиевых бронз.


ПРИМЕНЕНИЕ БРОНЗОВЫХ СПЛАВОВ ДЛЯ ИЗГОТОВЛЕНИЯ ПРУЖИН

(Упругие свойства бронзовых сплавов)

Для изготовления пружин используются материалы с высоким пределом упругости и минимальным уровнем неупругих явлений (упругий гистерезис, низкий уровень релаксации и др.).

Для изготовления пружин и пружинящих деталей используются ленты, прутки и проволока из БрКМц3-1, БрОФ6.5-0.15, БрОФ7-0.2, БрОЦ4-3, бериллиевых бронз. Высокая пластичность этих бронз даже в твердом состоянии позволяет использовать для навивки пружин не только проволоку, но и прутки диаметром до 10-15 мм.

В зависимости от вида пружины на её материал действуют нормальные (сжатие-растяжение) или касательные напряжения. Жесткость пружины определяется модулем упругостиE или модулем сдвига G соответственно. Область допустимых нагрузок тем больше, чем больше соответствующий предел упругости (текучести), но при расчетах допустимые нагрузки и деформации рассчитывают по пределу прочности при растяжении с учетом расчетных коэффициентов.

В таблице представлены свойства лент из БрОФ, БрОЦ, БрКМц (в твердом состоянии) и БрБ2 (после дисперсионного твердения из состояния «Т»).

ГОСТ 4748-92 1761-79 1789-70

Марка бронзы

БрКМц 3-1 БрОФ 6,5-0,15 БрОЦ 4-3 БрБ2
Модуль упругости Е, МПа
12000 9500 9500 12000
Предел упругости ? 0.005 , МПа 260 - 530 320- 480 300-450
Предел текучести ? 0.2 , МПа 510 - 750 550 - 720 520-680 1150-1600
Пределпрочности ? В , МПа 600 - 770 580 - 760 550-700 1150-1600
Относ.удлинение ?
2 3 2 -
Твердость HV (ГОСТ 1048-79 ) практически совпадаютс таковыми для бронзы БрКМц, но БрА7 отличается очень высоким пределом ползучести.

После изготовления пружин из облагораживаемых материалов (бериллиевые бронзы и сплав МНМц20-20) производится их дисперсионное твердение.

Технологический процесс изготовления винтовых цилиндрических пружин из материалов этой группы включает следующие основные операции: закалка, навивка заготовок, разрезка длинных заготовок на отдельные пружины, обработка торцовпружин, дисперсионное твердение. Процесс изготовления плоских пружин включает: резку материала на ленты требуемой ширины,закалку, штамповку пружин, дисперсионное твердение.
В результате такой термообработки повышается твердость, упругость, износостойкость и значительно повышается усталостная прочность материала пружин.

ПРИМЕНЕНИЕ БРОНЗОВЫХ СПЛАВОВ ДЛЯ ЭЛЕКТРОДОВ И ПРОВОДНИКОВ ТОКА

(Электродные и проводящие сплавы)

Среди многочисленных марок бронз выделяется группа сплавов с малым (0.3 – 1%) содержанием легирующих элементов. Они отличаются тем, что обладают практически такой же электро- и теплопроводностью, как и чистая медь, но при этом они имеют большую твердость, предел текучести, износостойкость, предел усталости, и сохраняют работоспособность до более высоких температур за счет повышенной (по сравнению с чистой медью) температуры начала рекристаллизации.

К таким сплавам относятся:

Кадмиевые бронзы (Cd : 0.9-1.2%) - прутки, ленты и коллекторные полосы.

Хромокадмиевые бронзы (Cd : 0.2-0.5%,Cr : 0.35-0.65%) - прутки

Магниевые бронзы (Мg : 0.3-0.8%) - коллекторные полосы и проволока.

Серебряные бронзы (Ag до 0.25%) – прутки, проволока, полосы.

Хромистые бронзы (Cr : 0.5 – 1.0) – прутки, плиты, полосы для коллекторных пластин, проволока.

Циркониевые (Zr : 0.2 – 0.7%) – коллекторные полосы, трубы, полосы

Хромисто-циркониевые бронзы – прутки, плиты

Эти бронзы имеют два основных применения.

1. Использование в производстве силовых подвижных контактов (контактные кольца,коллекторные пластины). Здесь в первую очередь важна высокая износостойкость, а также работоспособность при повышенных температурах.

2.Для изготовления электродов сварочных машин. Электродные сплавы должны иметь высокую температуру размягчения, высокую твердость и предел текучести в области рабочих температур (500 - 700 С).

На рисунке (Б) показано изменение твердости меди, кадмиевой и хромистой бронз с повышением температуры. Видно несомненное преимущество БрХ при высоких температурах. Ещё лучшие результаты имеют БрХЦр, БрБНТ и другие сплавы, но их применение ограничивается высокой ценой и доступностью.

На соседнем рисунке (А) видна принципиальная разница между облагораживаемой хромистой бронзой с одной стороны и обычной бронзой (БрКд) или медью с другой.

Отжиг холоднодеформированных прутков из меди или БрКд уменьшает твердость. При температурах выше температуры рекристаллизации разрушается текстура и металл разупрочняется. В то же время в БрХ при 400 о Спроисходит дисперсионное твердение и его твердость после отжига, наоборот, возрастает. Если бы дисперсионное твердение не происходило, то твердость уменьшалась бы по пунктирной кривой (происходило бы разупрочнение). Это означает, что после изготовления электродов из сплавов типа БрХ, БрХЦр, они должны быть соответствующим образом термообработаны для улучшения их физико-механических свойств.

Просмотров